salesforce

1Stanford University “Salesforce Research °UIUC “UC Santa Barbara

Motivation: RL with limited adaptivity?

¢ In many domains (recommendation, medical, ...),
deploying a new policy Is more prohibitive than
gathering data with the existing policy.
1) Policy

mw Policy N

<

Any middleground?

1

Offline (batch) RL is
non-adaptive, but much
more challenging.

i
fi N
f N
3 5
S,
N s,
NG D
—~
L
i
o
——

2) Data (e.. trajectory of an
episode)

Proposed framework: low switching cost RL

Setup: Episodic MDP with horizon H. RL algorithm
plays K episodes (T= K*H steps.) Measure PAC/Regret.

Definition: the switching cost between two
(deterministic) policies (,#')is number of different
actions they would take, (summed) for all (h, s):

Nswiteh (T, 7) := #{(h, s) € [H][S] : mn(s) # 7y (s)}

Definition: the switching cost of an RL algorithm that

playes with policies 7!, ..., 7% is

K-—-1
Nswitch - nswitch(ﬂ- , T)
k=1

Goal: fast exploration with low switching cost

Prior work: Q-Learning with UCB exploration:
O(VH*3SAT)regret, but Nywiteh = O(HSK) linear in K ¢
[Jin et al. 2018]

Any low regret algorithm such that Ngyitch ?

Online RL is fully adaptive.

Provably Efficient Q-Learning with Low Switching Cost

Yu Bai'?, Tengyang Xie®, Nan Jiang®, Yu-Xiang Wang*

Recap: UCB2 scheduling for bandits

Algorithm (UCB2): Repeat until played K times:
e Select the arm that maximizes the UCB
e If this is the r-th time it’s selected, play the arm exactly 7(r) — 7(r — 1) times, where

7(r) = (1 4+)"
Theorem [Auer et al. 2002]. UCB2 achieves same regret as UCB , and only
: Nswitch — O(A log(K/A)) =7
Idea: Integrate UCB2 into Q-Learning!

Our Algorithm: Q-1 earning with UCB2 scheduling

Key idea: update the policy only when Q has been updated 7(r) = (1 + «)" times.
Definition: The triggering sequence {t.} with parameter (o, 7,) is

{tntn>1 ={1,2,...,7(re) JU{T(re + 1), 7(re + 2),... }
Algorithm 2 Q-learning with UCB2-Hoeffding (UCB2H) Exploration

= J? // Two sets of Q:
Initialize:. n(z,a) < H,Qp <+ Qn, Np(x,a) < 0forall (x,a,h) €S x A x [H]|. Runningestimate Q
for episode k¥ = 1,..., K do ~ ~ Policy network Q
Receive z.
forsteph =1,..., H do
Take action aj, <— argmax,, Qp(xp,a’), and observe xj, 1. // Take action according to Q
t = Np(xn,an) < Np(zn,ap) +1;
by = cy/ H3(/t (Hoeffding-type bonus);
Qh(wh, ah) < (1 — Oét)Qh(ZBh, ah) + Qi [Th(lljh, ah) -+ Vh+1(azh+1) + bt]. // Update @ via Q-Learning
Vi(xp) < min {H, maXg e A Qn(xh, a’)}.

ift € {t,} -, (wheret, is defined in (1)) then

(Update pOliCy) Qh,(iﬁh,,) . T Qh, (éfUh,,) // Set () to be @ occasionally according to UCB2 scheduling
end if

end for
end for

———————————————————

@ {tn} is the triggering sequence above

Theoretical Result

Theorem 1: Our Q-Learning with UCB2-{Hoeffding, Bernstein} exploration
achieves O(vH%*3SAT) regret and logarithmic switching cost:

Nywitch < O(H®SAlog(K/A))
Proof highlight: analysis of error propagation under delayed Q updates.

Application: concurrent /parallel RL

Setup: M agents play an episode in parallel, and
can only communicate after each episode.

Idea: if policy not scheduled to switch in M episodes
= can parallelize to M non-communicating agents

Theorem 2 (Nearly linear speedup in PAC
concurrent RL): There exists concurrent versions
of our algorithm, s.t. given M agents, it can find

€ optimal policy in 5(H3SA | H{EZLSA) rounds.

— Also improves upon prior work [Guo et al.
2015] in (H, S, €) dependence.

Lower bound on low-switching algos

Simple Observation: you “need” to switch HS(A-1)
times to at least try out all the possible actions.

Theorem 3 (Lower bound): Any algorithm that has

switching cost Ngyitcn < HSA/2 has to suffer
from linear (trivial) worst-case regret:

sup Ejs|Regret(K)| > KH/4
MeM

Remark: Our algorithm achieves Nayiten = O(H®SA),
so still an H? gap between the lower and upper bounds.

Discussion & future work

e Close the gap on the switching cost.

e Alternative notions of limited adaptivity:

o Hard constraint on switching cost.
o RL with only O(1) rounds of adaptivity.

e Connections to fully offline/batch RL.

