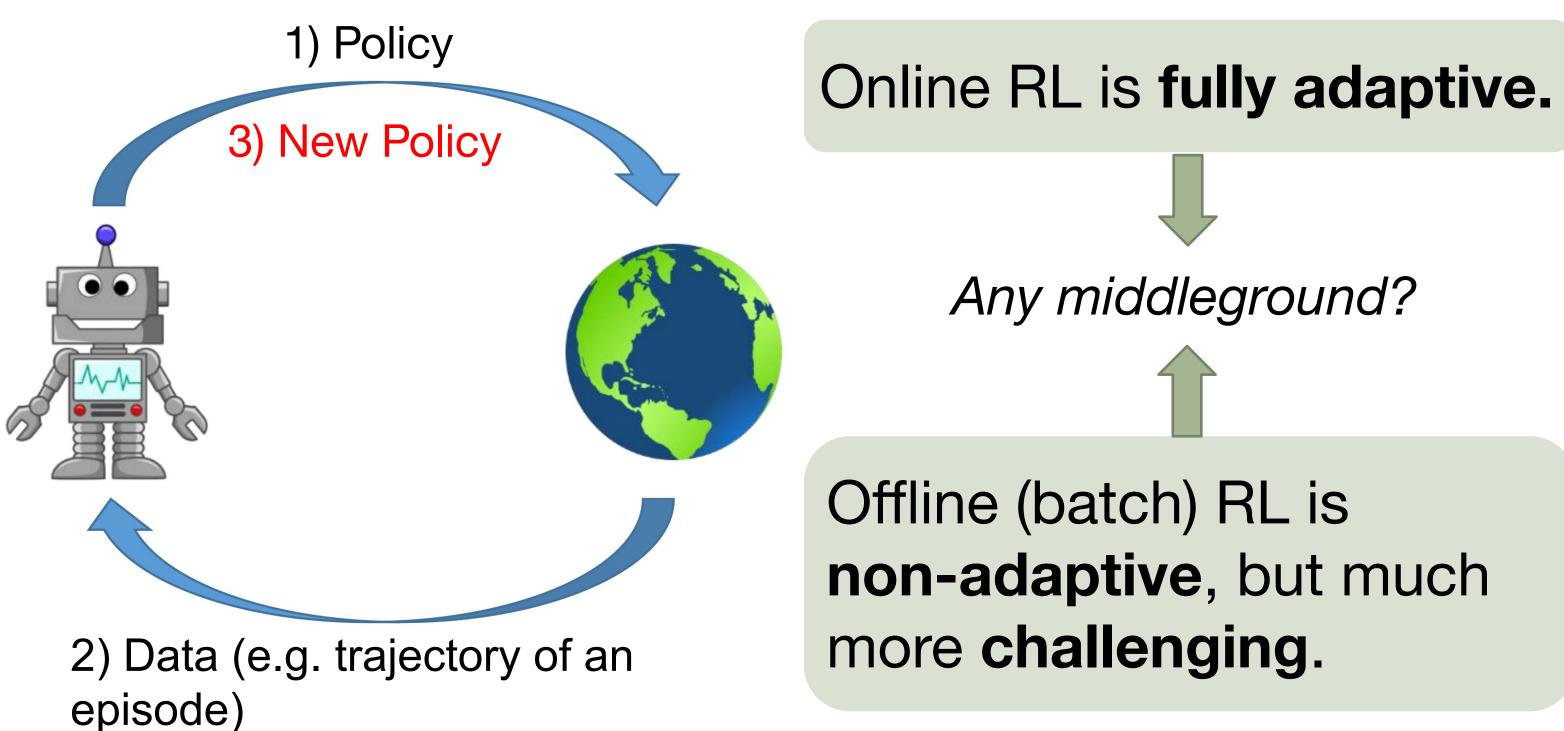


Motivation: RL with limited adaptivity?

• In many domains (recommendation, medical, ...), deploying a new policy is more prohibitive than gathering data with the existing policy.



Proposed framework: low switching cost RL

Setup: Episodic MDP with horizon H. RL algorithm plays K episodes (T= K*H steps.) Measure PAC/Regret.

Definition: the switching cost between two (deterministic) policies (π, π') is number of different actions they would take, (summed) for all (h, s): $n_{\text{switch}}(\pi, \pi') := \#\{(h, s) \in [H][S] : \pi_h(s) \neq \pi'_h(s)\}$

Definition: the switching cost of an RL algorithm that playes with policies π^1, \ldots, π^K is $N_{\text{switch}} := \sum n_{\text{switch}}(\pi^k, \pi^{k+1})$ Goal: fast exploration with low switching cost

Prior work: Q-Learning with UCB exploration: $\widetilde{O}(\sqrt{H^{4,3}SAT})$ regret, but $N_{\text{switch}} = \Theta(HSK)$ linear in K (?) [Jin et al. 2018]

Any low regret algorithm such that N_{switch} sublinear in K?

Provably Efficient Q-Learning with Low Switching Cost

Yu Bai^{1,2}, Tengyang Xie³, Nan Jiang³, Yu-Xiang Wang⁴ ¹Stanford University ²Salesforce Research ³UIUC ⁴UC Santa Barbara

Recap: UCB2 scheduling for bandits

Algorithm (UCB2): Repeat until played K times:

- Select the arm that maximizes the UCB

policy switches: $N_{\text{switch}} = O(A \log(K/A))$

Idea: Integrate UCB2 into Q-Learning!

Our Algorithm: Q-Learning with UCB2 scheduling

Definition: The *triggering* sequence $\{t_n\}$ with parameter (α, r_{\star}) is

Algorithm 2 Q-learning with UCB2-Hoeffding (UCB2H) Exploration

input Parameter $\eta \in (0, 1), r_{\star} \in \mathbb{Z}_{\geq 0}$, and c > 0. **Initialize:** $Q_h(x, a) \leftarrow H, Q_h \leftarrow Q_h$, $N_h(x, a) \leftarrow 0$ for all $(x, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$. Running estimate \tilde{Q} for episode $k = 1, \ldots, K$ do Receive x_1 . for step $h = 1, \ldots, H$ do Take action $a_h \leftarrow \arg \max_{a'} Q_h(x_h, a')$, and observe x_{h+1} . // Take action according to Q $t = N_h(x_h, a_h) \leftarrow N_h(x_h, a_h) + 1;$ $b_t = c \sqrt{H^3 \ell} / t$ (Hoeffding-type bonus); $\widetilde{Q}_h(x_h, a_h) \leftarrow (1 - \alpha_t)\widetilde{Q}_h(x_h, a_h) + \alpha_t [r_h(x_h, a_h) + \widetilde{V}_{h+1}(x_{h+1}) + b_t]. \quad \text{// Update } \widetilde{Q} \text{ via Q-Learning}$ $\widetilde{V}_h(x_h) \leftarrow \min \left\{ H, \max_{a' \in \mathcal{A}} \widetilde{Q}_h(x_h, a') \right\}.$ **if** $t \in \{t_n\}_{n \ge 1}$ (where t_n is defined in (1)) **then** $\langle t_n \rangle$ is the triggering sequence above (Update policy) $Q_h(x_h, \cdot) \leftarrow \widetilde{Q}_h(x_h, \cdot)$. // Set Q to be \widetilde{Q} occasionally according to UCB2 scheduling end if end for end for

Theoretical Result

achieves $\tilde{O}(\sqrt{H^{4,3}SAT})$ regret and logarithmic switching cost: Proof highlight: analysis of error propagation under delayed Q updates.

• If this is the r-th time it's selected, play the arm exactly $\tau(r) - \tau(r-1)$ times, where $au(r) = (1+lpha)^r$

Theorem [Auer et al. 2002]: UCB2 achieves same regret as UCB, and only log(K)

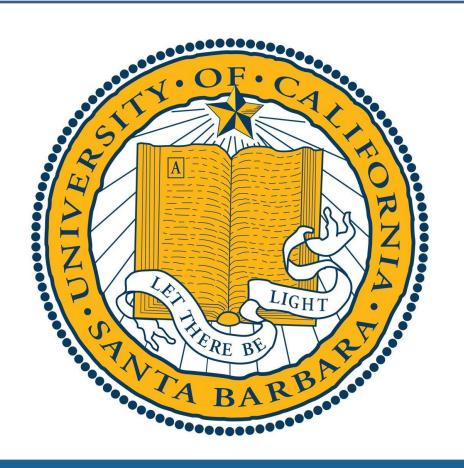
Key idea: update the policy only when Q has been updated $\tau(r) = (1 + \alpha)^r$ times.

 $\{t_n\}_{n\geq 1} = \{1, 2, \dots, \tau(r_\star)\} \cup \{\tau(r_\star + 1), \tau(r_\star + 2), \dots\}$

// Two sets of Q: Policy network Q

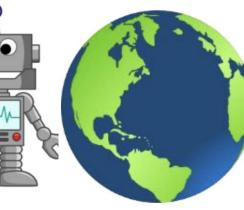
Theorem 1: Our Q-Learning with UCB2-{Hoeffding, Bernstein} exploration $N_{\text{switch}} \leq O(H^3 SA \log(K/A))$

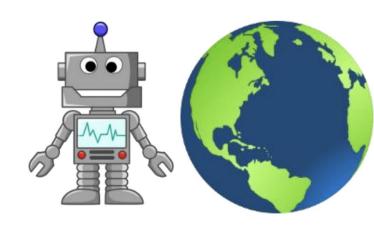
Theorem 3 (Lower bound): Any algorithm that has switching cost $N_{
m switch} \leq HSA/2$ has to suffer from linear (trivial) worst-case regret:

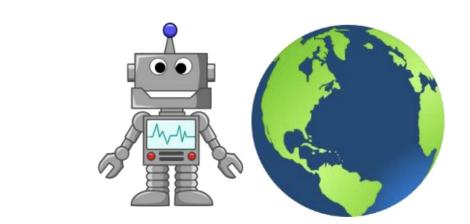


Application: concurrent /parallel RL

Setup: M agents play an episode in parallel, and can only communicate after each episode.







Idea: if policy not scheduled to switch in M episodes \Rightarrow can parallelize to M non-communicating agents

Theorem 2 (Nearly linear speedup in PAC concurrent RL): There exists concurrent versions of our algorithm, s.t. given M agents, it can find ε optimal policy in $\widetilde{O}\left(H^3SA + \frac{H^{\{5,4\}}SA}{\varepsilon^2M}\right)$ rounds.

 \rightarrow Also improves upon prior work [Guo et al. 2015] in (H, S, ε) dependence.

Lower bound on low-switching algos

Simple Observation: you "need" to switch HS(A-1) times to at least try out all the possible actions.

> $\sup \mathbb{E}_M[\operatorname{Regret}(K)] \ge KH/4$ $M \in \mathcal{M}$

Remark: Our algorithm achieves $N_{\text{switch}} = \widetilde{O}(H^3 S A)$, so still an H^2 gap between the lower and upper bounds.

Discussion & future work

- Close the gap on the switching cost.
- Alternative notions of limited adaptivity:
 - Hard constraint on switching cost.
 - \circ RL with only O(1) rounds of adaptivity.
- Connections to fully offline/batch RL.