

Challenges

Off-policy evaluation: Evaluating the performance of *target policy* using data sampled by a *behavior policy*.

Importance: Crucial for using reinforcement learning (RL) algorithms responsibly in many real-world applications, e.g., medical treatment and digital marketing.

Challenge: The variance of importance sampling (IS)-based approaches tends to be too high to be useful for long-horizon problems because the variance of the cumulative product of importance weights is exploding exponentially.

Our Solution

- Cumulative product of importance weights is only necessary without state observability.
- Reduce variance by marginalizing the actions to get the state distribution at every step.

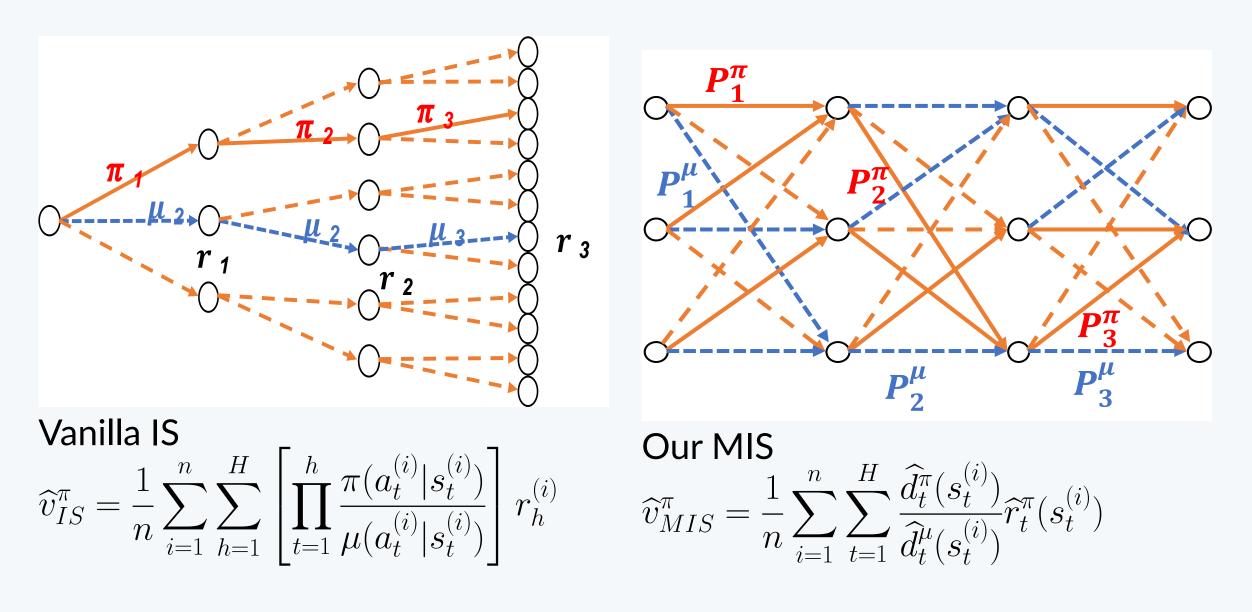


Figure: Vanilla IS versus our MIS. MIS changes mean-of-products to product-of-means.

The marginalized estimators work in the *space of possible states*, instead of the *space of trajectories*, resulting in a significant potential for variance reduction.

link: https://arxiv.org/abs/1906.03393

Scan QR code to view the paper

Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling

Tengyang Xie^{*1} Yifei Ma²

¹University of Illinois at Urbana-Champaign

²Amazon Al

Marginalized Importance Sampling (MIS)

Notations: behavior and target policy $\mu_t(a_t|s_t)$ and $\pi_t(a_t|s_t)$, resp.; transition function $T(s_{t+1}|s_t, a_t)$; state distribution $d_t^{\mu}(s_t)$ and $d_t^{\pi}(s_t)$.

Observation: Policy-induced state transitions are temporally independent

$$d_t^{\pi}(s_t) = \sum_{s_{t-1}} P_t^{\pi}(s_t | s_{t-1}) d_{t-1}^{\pi}(s_{t-1}),$$

where $P_t^{\pi}(s_t | s_{t-1}) = \sum_{a_{t-1}} T_t(s_t | s_{t-1}, a_{t-1}) \pi(s_t | s_{t-1})$

Off-policy evaluation with MIS

 $\widehat{v}_{\mathsf{MIS}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}(s_{t}^{(i)})}{\widehat{d}_{t}^{\mu}(s_{t}^{(i)})} \widehat{r}_{t}^{\pi}(s_{t}^{(i)}),$

where the functions of the states are estimated as

$$\widehat{d}_t^{\mu}(s_t) = \frac{1}{n} \sum_i \mathbf{1}(s_t^{(i)} = s_t); \quad \widehat{d}_t^{\pi}(s_t) = \sum_{s_{t-1}} \widehat{P}_t^{\pi}(s_t | s_{t-1}) \widehat{d}_t^{\pi}(s_t)$$

$$\widehat{P}_{t}^{\pi}(s_{t}|s_{t-1}) = \frac{1}{n_{s_{t-1}}} \sum_{i=1}^{n} \frac{\pi(a_{t-1}^{(i)}|s_{t-1})}{\mu(a_{t-1}^{(i)}|s_{t-1})} \mathbf{1}(s_{t-1}^{(i)} = s_{t-1}, s_{t} = s_{t-1}, s_{t} = s_{t-1}, s_{t-1} = s_{t-1}, s_{t$$

$$\mathbf{J} \ \ \mathbf{T}_{t} \ (\mathbf{s}_{t}) = \frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{1}{\mu(a_{t}^{(i)}|s_{t})} \mathbf{T}_{t}^{*} \mathbf{L}(\mathbf{s}_{t})$$

Theoretical Analysis -- Methodology

Why MIS breaks the exponential dependency on horizon:

- Ergodicity all states are visited with probability at least $d_t^{\mu} > d_m > 0.$
- Sufficient data $n > O(d_m^{-1})$, so every state is empirically visited with high probability.
- Let $\tau_a \tau_s$ be the max importance weight; $n > O(\tau_a \tau_s)$ controls the variance.

Bellman equation for variance decomposition (Lemma B.3)

- Define d(s), V(s), and $\tilde{r}(s)$ to be "fictitious" tail-clipped estimators;
- Their vector forms include their values on all the states.

Bellman equation $V_t^{\pi}(s_t) = r_t^{\pi}(s_t) + \sum P_t^{\pi}(s_{t+1}|s_t)V_{t+1}^{\pi}(s_{t+1})$

$$\Rightarrow \quad \operatorname{Var}[\widetilde{v}^{\pi}] = \frac{\operatorname{Var}[V_1^{\pi}(s_1^{(1)})]}{n}$$

$$+\sum_{h=1}^{H}\sum_{s_{h}}\mathbb{E}\left[\frac{\tilde{d}_{h}^{\pi}(s_{h})^{2}}{n_{s_{h}}}\mathbf{1}(E_{h})\right]\operatorname{Var}_{\mu}\left[\frac{\pi(a_{h}^{(1)}|s_{h})}{\mu(a_{h}^{(1)}|s_{h})}(V_{h+1}^{\pi}(s_{h+1}^{(1)})\right]$$

Yu-Xiang Wang³

³University of California, Santa Barbara

 $(a_{t-1}|s_{t-1}).$

 $_{t-1}^{\pi}(s_{t-1}),$ where

 $(s_t^{(i)});$

 $+ r_h^{(1)}) |s_h^{(1)} = s_h$

Theoretical Analysis -- Optimality

MIS has optimal sample complexity upto a factor of H (Theorem 4.1)

- Define \mathcal{P} be the projection to feasible policy values.
- Let $\tau_a := \max_{t,s_t,a_t} \frac{\pi(a_t|s_t)}{\mu(a_t|s_t)}$ and $\tau_s := \max_{t,s_t} \frac{d_t^{\pi}(s_t)}{d_t^{\mu}(s_t)}$.
- H is total horizon, σ is observation noise, and $R_{\rm max}$ is maximal immediate reward.

then $\mathbb{E}[(\mathcal{P}\widehat{v}_{\mathrm{MIS}}^{\pi}-v^{\pi})^2]$ $\leq \frac{1}{n} \sum_{t=1}^{H} \mathbb{E}_{\mu} \left[\frac{d_{t}^{\pi}(s_{t})^{2}}{d_{t}^{\mu}(s_{t})^{2}} \operatorname{Var}_{\mu} \left[\frac{\pi_{t}(a_{t}|s_{t})}{\mu_{t}(a_{t}|s_{t})} \left(V_{t+1}^{\pi}(s_{t+1}) + r_{t} \right) |s_{t}| \right] + \tilde{O}(n^{-1.5}).$

Our paper shows the worst-case bound of our estimator is $\mathbb{E}[(\mathcal{P}\hat{v}_{MIS}^{\pi}$ $v^{\pi})^2] \leq \frac{4}{n} \tau_a \tau_s (H\sigma^2 + H^3 R_{\max}^2)$, which is optimal upto a factor of H compared with the CR lower bound [Jiang and Li, 2016].

Experimental Study

Tabular MDPs: (common) start with State s_1 , choose between Action a_1/a_2 , where $\mu(a_1) = 0.5$; $\pi(a_1) = 0.2$. Random transition to state s_2/s_3 . ModelWin and ModelFail MDPs are described as follows: • ModelWin: rewards decided by the action on the observable

- state s_1 . Set p = 0.4.
- ModelFail: actions lead to unobservable states, where rewards are decided; set p = 1.

MountainCar: drive back and forth until at top of the hill. State = (position, speed); action=acceleration. Evaluate Q-learning policy π from soft-Q-policy for μ .

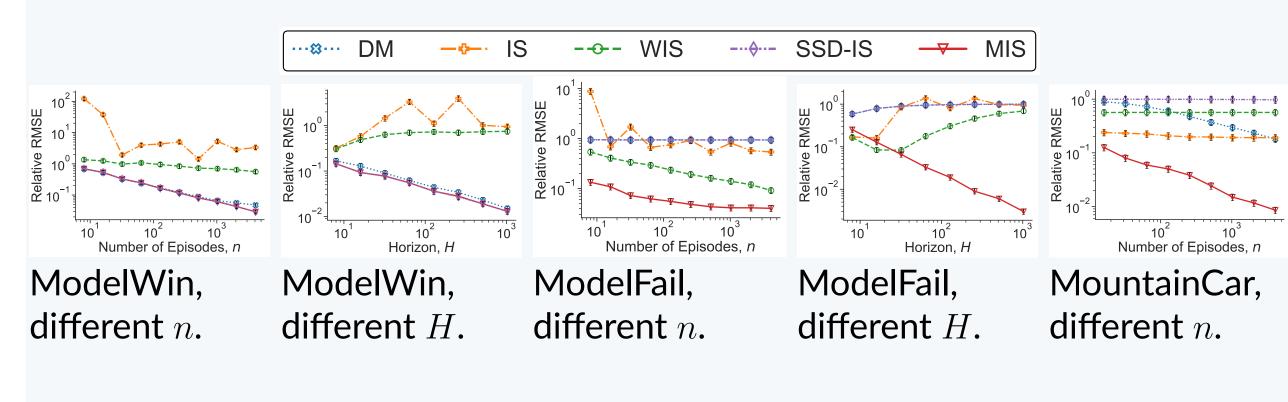


Figure: Relative RMSE error for policy evaluation. MIS matches DM (model-based method) on ModelWin and outperforms IS/WIS on ModelFail and MountainCar, both of which are the best existing methods on their respective domains.

References

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In International Conference on Machine Learning, pages 652--661, 2016.

